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A theoretical treatment of the kinetics of structural recovery of polymer glasses is applied to 'intrinsic' 
thermal cycles. These cycles involve cooling a sample at constant rate ql from an equilibrium state at high 
temperature through the glass transition region to a lower temperature T~, and then immediately reheating 
the sample at constant rate q2- In differential scanning calorimetry (d.s.c.), a peak in the specific heat capacity 
is observed during the heating stage, occurring at a temperature Tp which depends upon both the cooling and 
the heating rates. For a fixed ratio of these rates, such intrinsic cycles yield heating isobars of identical shape, 
but shifted along the temperature scale by an amount which depends upon the heating (or cooling) rate. The 
invariance of the peak shape, and in particular the peak width, is shown to provide a means of correcting d.s.c. 
data for thermal lag on heating. Experimental data for a low molecular weight polystyrene, when corrected 
for thermal lag in this way, are shown to agree with the predictions of the kinetic model for structural 
recovery. An analytical treatment of heat transfer in the d.s.c, cell is also described, and the theoretical results 
are compared with the experimental data. 
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INTRODUCTION 

Differential scanning calorimetry (d.s.c.) is a widely used 
technique for the study of thermal events in polymers and 
other materials. In particular, the application of d.s.c, to 
the glass transition region of amorphous polymers has 
received considerable attention over many years in 
attempts to characterize and to model the structural 
recovery of polymer and other glasses (see, for example, 
references 1-7). The usual procedure here is first to cool 
the sample, at a constant rate, then to anneal it for a fixed 
period at a temperature below the glass transition 
temperature T~, and finally to heat it at a constant rate 
through the transition region. The d.s.c, output is 
proportional to the specific heat Cp of the sample, which 
typically passes through a maximum on heating, going 
from a value characteristic of the glass, C~, to one 
characteristic of the liquid, Cpl. The position of this 
maximum on the temperature scale and its height are 
both dependent on the whole previous thermal history of 
the sample ~-a, and in particular on the amount of 
annealing at the lower temperature and on the heating 
rate. Such effects are clearly shown qualitatively by d.s.c., 
but an analysis of structural recovery requires a 
quantitative interpretation of the data. This latter is 
hindered by the problem of experimental thermal lag, 
which has the general effect of broadening the sample 
response; the degree of broadening is dependent on the 
heating rate, and it is particularly evident for the faster 
heating rates. 

It is not always clear in the literature whether or not 
published data have been corrected for thermal lag; 
furthermore, in some instances where corrections have 
been made, it is not obvious just how the relevant 
corrections have been applied. Nevertheless, it is 
accepted 9 that significant thermal gradients exist in d.s.c., 
and methods of correcting for thermal lag have been 
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suggested 1°'11. These corrections involve contributions 
to the thermal lag which originate either in the instrument 
itself or in the sample material. The former corrections are 
easier to make and involve a calibration of the 
temperature scale by reference to a fixed temperature, 
typically the melting temperature of a pure metal such as 
indium. Since finite heating rates cause the melting 
endotherm to be less than perfectly sharp, the usual 
procedure 11 is to define a 'dynamic' melting temperature 
as the temperature of intersection of the extrapolated 
leading edge of the melting endotherm with the 
extrapolated baseline. 

The latter corrections, i.e. those that result from 
thermal lag within the sample material itself, are, 
however, harder to make. Procedures involving the use of 
different sample masses have been suggested 9, with an 
extrapolation to zero mass defining the thermal lag. This, 
however, has some problems: for example, only a limited 
range of sample masses is available for which adequate 
sensitivity from the instrument can be maintained. 

The present paper suggests an alternative procedure for 
correcting for thermal lag during heating. It is based upon 
the results of a theoretical treatment of structural 
recovery in the glass transition region originally 
developed by Kovacs, Aklonis, Hutchinson and Ramos, 
now commonly known as the KAHR model 12. This 
model predicts a response to certain three-step thermal 
cycles in which no thermal lag occurs; experimental data 
are compared with this theoretical model, and the 
resulting thermal lag is analysed and then discussed in 
terms of the temperature gradients existing within the 
system during the heating stage of these cycles. 

THEORY 

The isobaric response of glasses to any prescribed 
thermal treatment can be obtained by an analysis based 
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Note that each derivative is evaluated with the other two 
variables held constant. Furthermore, one can show12-14 
that, for 7"l~Tg(qO, s(TO in such cycles is 
indistinguishable from zero; in other words, the 
temperature Tp is independent of the lower temperature 
7"1 of the thermal cycle provided that the cooling stage 
proceeds to a sufficiently low temperature. This 
important observation will be referred to again later in 
this section. 

The peak temperature Tp is therefore dependent only 
on the cooling and heating rates, ql and q2, respectively, 
used in these cycles. These dependencies have been 
evaluated theoretically from numerous cycles involving 
various combinations of ql and q2; this has been done for 
systems based upon both the discontinuous KAHR 
multiparameter model ~2 and a continuous spectrum ~5 in 
which the recovery function is described by a 'stretched 
exponential' empirical expression now known as the 
Williams-Watts function 16. Both treatments give 
identical results in respect of the partial derivatives 
defined in equations (1)-(3). Of particular interest here is 
a special case of these intrinsic cycles, in which the ratio of 
cooling rate to heating rate, R = ]qll/q2, is held constant. 
The heating stages of three such cycles are illustrated in 
Figure 1, for which a ratio R = 1 has been used. These 
theoretical curves were generated using the Williams 
Watts function with parameter values indicated in the 
caption. 

It is clear from Figure 1 that the heating stages of 
intrinsic cycles, for which the same ratio R pertains, result 
in peaks in the specific heat capacity or thermal expansion 
coefficient which are exactly superposable by a shift along 
the temperature scale. This shift can, in fact, be shown to 
be related to the partial derivatives defined in equations 

(2) and (3): 
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where 0 is a material parameter characterizing the 
temperature dependence of the retardation times in 
equilibrium ~ 2. The importance of this exact superposition 
of the peaks in the present context is that the peak shape, 
or, more precisely, the peak width which will be used 
later, is an invariant under these experimental conditions. 
That is, the widths of Cp or ~ peaks on heating at a rate q2 
immediately (no annealing) after cooling from equilibrium 
above Tg at a rate ql are theoretically constant for 
intrinsic cycles in which the ratio R =  Iql[/q2 is fixed. Any 
experimentally observed deviation from a constant peak 
width must therefore reflect a broadening resulting from 
thermal lag, and this provides a means of making 
quantitative corrections in a manner to be described 
below. 

An important aspect of this procedure concerns the 
thermal lag in the sample that will inevitably be present 
during the cooling stage. Here the sample temperature 
will be greater than the set heater temperature by an 
amount which depends on the cooling rate. It follows that 
the lower temperature T 1 + A T experienced by the sample 
will be different for different cooling rates even though the 
instrument is programmed to stop cooling and to start 
heating again at a fixed temperature T 1. However, as was 
shown above, the peak temperature Tp is independent of 
the lower temperature 7"1 (provided that T t is sufficiently 
low within the glassy region), and hence it does not matter 
that the sample lower temperature exceeds the set heater 
temperature by a small temperature difference A T. 

t- 
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on the KAHR model 12. Of particular interest in most 
studies of the kinetics of structural recovery is the thermal 
treatment involving a three-step cycle. Here the sample is 
cooled at a constant rate qt (K min - t )  from equilibrium 
at a temperature T O (>> Tg(q0 ) to a temperature T 1 below 
Tg(q 0, where Tg(ql) is the glass transition temperature 
relevant to the cooling rate qt. The sample may then be 
annealed at T~ before reheating at a constant rate q2 
(K min-1) until equilibrium is again established. Within 
this general scheme of three-step thermal cycles is the 
particular variant known as the 'intrinsic' cycle, for which 
the sample is not annealed at T 1 (i.e. annealing time is 
zero) before reheating; such intrinsic thermal cycles are 
therefore defined by only three experimental variables: q~, 
q2 and T 1. It can be s h o w n  t 2 - 1 4  that, on heating, the 
thermal expansion coefficient or the specific heat capacity 
Cp passes through a maximum at a temperature Tp which 
depends upon these experimental variables. The 
dependence of Tp on each experimental variable in turn is 
defined through the partial derivatives: 

Figure 1 Theoretical heating isobars of thermal expansion coefficient 
as a function of T-Tr ,  where Tr is a reference temperature. The 
Williams-Watts function was used with sub-exponential parameter 
fl=0.456, and the other material parameter values were: 
A~t=4.0x 10-4 K -1, cq = 6 . 0 x  10 4 K - I ,  0 = I . 0 K  - l ,  x=0.2 ,  
Zref=8.32t.u., T o - T r = 1 0 K ,  T 1 - T r = - - 2 0 K ,  AS=0  (for nomencla- 
ture see refs. 12-15). Values of ql and q2 (in units of Kt .u .  -1) are as 
follows, the ratio being R = I  in all cases: curve A, q l = - 0 . 0 1 ,  
q2=+0 .01 ;  curve B, q t = - 0 . 1 ,  q2=+0 .1 ;  curve C, q l = - l . 0 ,  
q2 = + 1.0 
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Table I Combination of cooling and heating rates to achieve the given 
values of R 

ql (K min -1) for 
q2 
(K m i n - ' )  R=0.33 R=0.5  R =  1.0 

2.5 0.8 1.3 2.5 
5.0 1.7 2.5 5.0 
7.5 2.5 3.8 7.5 

10.0 3.3 5.0 10.0 
12.5 4.1 6.3 12.5 
•5.0 5.0 7.5 15.0 
17.5 5.8 8.8 17.5 
20.0 6.7 10.0 20.0 
25.0 8.3 12.5 - 
30.0 10.0 15.0 - 
35.0 11.7 17.5 - 
40.0 13.3 20.0 - 

Equation (4) above shows also that the material 
parameter 0 can be evaluated by determining 
experimentally the dependence of the peak temperatures 
Tp, in such intrinsic cycles with fixed R, on the cooling or 
heating rates. Furthermore, since 0 is a constant, a linear 
dependence of T v on lnlqll or In q2 should be observed. 

EX PERIMENTAL 

A narrow fraction atactic polystyrene (M~/M, < 1.1) with 
a molecular weight of 2820 from Polymer Laboratories 
Ltd was used in this study. A single sample of mass 
20.02 mg was used throughout. This polystyrene has a 
dilatometric glass transition temperature in the region of 
71°C. 

The polystyrene sample was subjected to all thermal 
cycles within the cell of a Perkin-Elmer DSC-4 
differential scanning calorimeter. These thermal cycles 
involved heating the sample to a temperature of 120°C 
and equilibrating for 5 min; cooling at a constant rate ql 
to a lower temperature T1, which was either 55°C or 40°C 
in two series of experiments performed; and, finally, 
reheating immediately at a constant rate q2 until 
equilibrium is again established at 120°C. Controlled 
cooling rates between 0.8 K min- 1 and 20 K min- ~ were 
used, the upper limit being the maximum cooling rate that 
could be achieved with the normal head with cooling 
water flowing. Heating rates between 2.5 K min-~ and 
40 K min-1 were used, with values chosen such that a 
number of cycles with different ratios R could be 
achieved. The combinations of cooling and heating rates 
are given in Table 1. 

At each heating rate the temperature scale calibration 
was carried out as described elsewhere 11, using indium as 
the calibrant. Immediately after this, and before 
performing any experiments, the baseline was optimized 
over the whole experimental temperature range and for 
10 K beyond the upper (To) and lower (TI) temperatures. 
The instrument sensitivity was set at maximum and the 
encapsulated sample was placed centrally in the cell, as 
was the empty reference pan. Care was taken to ensure 
that neither the sample nor the reference pan moved on 
closing the cover of the d.s.c, cell. 

For each heating rate, a series of experiments was 
performed involving the cooling rates listed in Table 1. 
Throughout this series of experiments, the sample 
remained in the d.s.c, cell. This procedure removed any 

experimental error which could have arisen if the sample 
location within the cell had been altered between each 
experiment. 

The heating stages of these intrinsic cycles gave rise to 
peaks in the differential power output from the d.s.c., in 
the usual way. The characteristic features of these peaks of 
particular importance here are the peak temperature Tp 
and the peak width W. These are illustrated in Figure 2, 
the peak width being determined as follows. An 
inflexional tangent was drawn to the rise of the peak, and 
its intersection with the extrapolated glassy baseline 
defined an initial onset temperature T~. Similarly, the 
inflexional tangent to the fall of the peak intersected the 
extrapolated liquid baseline at a final temperature T r. The 
width W of the peak is defined as the difference, Tr- T~, 
between the final and initial peak temperatures. 

RESULTS 

Figure 3 shows the heating stage of three intrinsic cycles 
for which the cooling rate was half the heating rate 
(R = 0.5) and involving a lower temperature T1 of 40°C. 
Theoretically, in the absence of thermal lag, each peak 
should be identical in shape but displaced along the 
temperature axis. Clearly this is not the case: the peak 
broadens as the heating rate increases. Consider also the 

5.00 "~p ~ - - ~ - ' - - - r - - -  

t ' 

i _  

~' ~ 2.so 

40 50 60 70 T i 80 Tf90 100 110 120 

Temperature (°C) 

Figure 2 Typical experimental heating isobar (energy input rate versus 
temperature) for an intrinsic thermal cycle. The peak width W is defined 
by the use ofinflextional tangents intersecting, at Ti and 7~ respectively, 
the extrapolations of the asymptotic glassy region and the equilibrium 
liquid. The temperature Tp is the temperature at which the maximum in 
the peak occurs 
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Figure 3 Experimental heating isobars for intrinsic thermal cycles with 
R = 0.5, and with the particular values of heating rate indicated. The 
ordinate is the normalized power output from the d.s.c., on a scale from 
zero at 50°C to unity at l l0°C. The cycles involved had T o = 120°C and 
T~ = 40°C, though only part of this temperature range is shown in the 
figure. Note the departure of the curve for q2 = 40 K min-  1 from those 
for lower values of q2 in the temperature range below 60°C 
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Variation of peak temperature Tp with log (heating rate) for Figure 4 
intrinsic cycles with R = 0.5 and T 1 = 40°C. The peaks in these thermal 
cycles were broad, with the peak temperature actually covering a range 
0.5-1.5 K depending upon the heating rate. The points plotted here are 
the mid-points of these peak temperature ranges, and the error bars 
indicate the full range over which the peak temperature occurs 

dependence of the peak temperatures Tp on log (heating 
rate), which is theoretically predicted to be linear 
(equation (4)). This dependence is shown in Figure 4 for 
the series of intrinsic cycles for which four of the heating 
curves were shown in Figure 3. It is clear that the 
relationship is not linear over this range of heating rates, 
as is required by equation (4) for a constant value of 0. 
The implication of these results is that not only is the peak 
broadening as q2 increases, but also the peak temperature 
is simultaneously being shifted to increasingly excessive 
values. 

These discrepancies between theory and experiment 
result from thermal lag, and the data must be corrected to 
allow for this. Accordingly, the width of each peak was 
determined in the manner outlined in the previous section 
and plotted as a function of the heating rate. This 
procedure was adopted for each of the two series of cycles 
investigated here, involving lower temperatures T t of 
55°C and 40°C. The results for each of these series are 
shown in Figures 5 and 6. These figures show that the 
peak width is a strong function of the heating rate, 
particularly at the fastest heating rates, and furthermore 
that the variation is the same for each value of R, the 
curves simply being shifted to larger peak widths as R 
increases. 

Since the peaks in all of the heating curves used to 
obtain the data in each of Figures 5 and 6 should 
theoretically, in the absence of thermal lag, be of the same 
shape, and hence of the same width, a method of 
correcting for this thermal lag is immediately suggested: 
the temperature scale within each peak should be 
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adjusted in such a way that for each heating rate the peak 
width is the same. Ideally each peak should be corrected 
by comparison with the width of a peak for which there is 
no thermal lag. However, even at the slowest heating rates 
used here there remains evidence of significant thermal 
lag since the peak width still varies in this region (see 
Figures 5 and 6). Hence, it is necessary to correct the peak 
widths by comparison with a reference peak, which is 
arbitrarily chosen here to be that obtained for a heating 
rate of 10 K min-  1. The peak widths corrected in this way 
will not be correct in an absolute sense, but will be correct 
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® 
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log [q2 (K rn in -1 ) ]  

Figure 5 Peak width as a function of log (heating rate) for intrinsic 
cycles with T1 =55°C and (Q) R=0.33,  (A) R=0.5,  ([~) R = l . 0  

16 

15 

14 

® A  
v 13 ~ a 

O- mV • ~ 

11 

10 

9 

8 a I i 

0.5 1.0 1.5 

log [q2 (K m i n - 1 ) ]  

Figure 6 Peak width as a function of  log (heating rate) for intrinsic 
cycles with T 1 =40°C and R values given in Figure 5 
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F i g u r e  7 Variation of corrected peak temperature Tp(corr) with 
log (heating rate) for intrinsic cycles with T~ = 40°C and R = 0.5 

Table 2 Values of 0 obtained for various ratios R and lower 
temperatures T~ 

0 for 

T 1 (°C) R=0.33 R=0.5  R =  1.0 

55 0.48 0.55 0.70 
40 0.66 0,64 0.72 

relative to each other, which is all that is necessary for the 
present purposes. 

The peak temperatures Tp are corrected as follows (refer 
to Figure 2). Theoretically, each peak for the same value 
of R should be of the same width W. Accordingly, to 
correct for thermal lag a scaling factor Fq~ must be applied 
for each heating rate q2: 

W~o (5) 

where Wlo and Wq, are the peak widths at the reference 
heating rate of 10 K min-1 and at q2, respectively. 

The onset temperature T~,~, is calibrated for each 
heating rate by reference to the melting temperature of 
indium. For heating rate q2, the corrected peak 
temperature, Tp,~2(corr), is therefore obtained by applying 
the scaling factor in equation (5) to the temperature 
difference Tp,q,- Ti.q2. Thus: 

Tp,q,(corr) = Ti,~, + Fq,(Tp,q,- Ti,~,) (6) 

The corrected peak temperatures are shown as a 
function of log (heating rate) in Figure 7 for intrinsic 
cycles with 7"1=40°C. For clarity, only data 
corresponding to R = 0.5 are shown. 

The curve of Figure 4 is typical of the variation of the 
uncorrected peak temperatures with log (heating rate); in 
Figure 7 it can clearly be seen to have been linearized by 
the application of the above corrections for thermal lag. 
The linear relationship thus obtained corresponds to 

equation (4) and the value of 0 may be obtained directly 
from its slope. Values of 0 have been determined in this 
way for each value of R and for both lower temperatures 
T 1 of 55°C and 40°C. The results are given in Table 2. 

THEORETICAL MODEL OF HEAT TRANSFER 
IN D.S.C. 

When a polymer glass is heated through the transition 
region, the power output from the d.s.c, is observed to 
pass through a peak. The purpose of the heat transfer 
model was to show how the shape of this peak was altered 
as the heating rate was increased. Accordingly, a typical 
variation of specific heat capacity Cp with temperature 
was adopted as a reference and was used together with 
typical values for other relevant material constants to 
define the parameters of the model. In fact, for the 
purposes of this model, rather than Cp it is more 
convenient to use the thermal diffusivity ~ (=k/pCp, 
where k=thermal conductivity and p=density); the 
temperature variations of both Cp and ~ are shown in 
Figure 8. 

The thermal model is of network type, one-dimensional 
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Figure 8 (a) Typical dependence upon temperature of the specific heat 
capacity Cp of polystyrene within the transition region. These data are 
used as a reference in the theoretical heat transfer model to determine 
the effect of sample thermal lag on peak shape. (b) The corresponding 
dependence upon temperature of the thermal diffusivity ~ of 
polystyrene. A typical variation of density p with temperature was 
assumed in converting from Cp to ct, and a constant value of thermal 
conductivity k=0.17 W m  -x K -~ was used 
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Table 3 Data  relating to thermal network model 

Heating rate (K min -1) 

40 20 10 5 2.5 1.2 0.5 

Surface resistance, Rs=2.75 10 -4  m 2 K W -1 (ref. 18) 
Accuracy parameter 1 
Number  of nodes 3 
Time step (s) 0.219 
ATo~ (K) 1.015 
ATIN (K) 1.501 
Peak width (K) 13.79 

Surface resistance, Rs=5.5  10 -4  m z K W -~ 
Time step (s) 0.251 
AT0, (K) 2.530 
AT, N (K) 2.890 
Peak width (K) 19.79 

With aluminium pan 
Time step (s) 
ATol (K) 
AT, N (K) 
Peak width (K) 

1 1 1 0.5 0.5 0.25 
3 3 2 2 2 2 
0.219 0.219 0.465 0.931 0.931 2.327 
0.521 0.264 0.181 0.090 0.043 0.018 
0.759 0.384 0.145 0.072 0.035 0.015 

10.97 9.43 8.89 8.77 8.73 8.69 

0.251 2.592 
0.336 0.022 
0.384 0.015 
9.59 8.71 

0.179 
0.083 
0.384 
9.48 

AT0~ = maximum value of temperature lag between set point and first node 
AT1N = maximum value of temperature lag between first and last nodes 
Sample thickness = 0.75 m m  
Thermal diffusivity, ct - See Figure 8 
Thermal conductivity, k = 0.17 W m - 1 K -  

and non-steady. Thermal capacity of the material is 
lumped at nodes which lie at the centres of sections of 
equal thickness. Thermal capacity per unit area normal to 
heat flow is thus given by: 

/ k  \ k t  
capacity = pC pt = pC vt~ ~C~v ) = ~ (7) 

where t is the section thickness. This capacity is 
continuously varied as a function of node temperature 
according to Figure 8. 

Thermal conductance between material nodes is simply 
evaluated as the ratio k/t. 

The network is directly analogous to an electrical 
resistance/capacitance circuit. The heater 'set' tempera- 
ture communicates with the nearest material node 
through an appropriate surface contact resistance and it 
is the rate of change of this set temperature with time 
which is the principal input parameter. 

The time-step length is chosen to give an 'accuracy 
parameter' AP of unity. At the slowest heating rates, 
however, a problem arose in regard to the small size of the 
temperature differences between nodes, and it was 
necessary to reduce AP progressively to 0.25 and the 
number of nodes from three to two. Preston et al. ~ 7, who 
describe the network analysis, say that values of AP 
down to 0.1 are normally acceptable. 

Surface contact resistance is regarded as the most 
uncertain input parameter. A value from Fried 18 was 
chosen for the main series of calculations but this was 
arbitrarily doubled to give the second set of results in 
Table 3. Sensitivity to AP and to the number of nodes was 
found to be satisfactory by an unreported series of 
calculations. Thermal conductivity was also adjusted but 
found to have no outstanding effect on results. It should 
be noted that the aluminium sample pan was normally 
omitted from the model, but Table 3 shows a single set of 
calculations for which this pan was included. These results 
are not significantly different from those obtained without 

2 . 0  ' 

1.5 
E 

"- 1.0 

LU 

0.5 
40 

Figure 9 

' ' 7tO 8 ' L , 5 0  6 0  0 9 0  1 O0 110 120 

Heater temperature (°C) 

Typical theoretically calculated output  from the d.s.c., based 
upon the reference Cp variation shown in Figure 8a. The heating rate 
here is 1 0 K m i n  - t  

inclusion of the aluminium pan, which was fortunate 
since the small capacity of the aluminium gave AP values 
which prevented evaluation at the lower heating rates. By 
a further small approximation, the uppermost surface was 
taken to be adiabatic. 

A typical result is shown in Figure 9 where the energy 
input rate to the d.s.c, is plotted as a function of the heater 
temperature for a heating rate of 10 K min -1. The peak 
width is determined for each heating rate in the manner 
shown in Figure 2, but using a routine within the 
computer program; the theoretical values obtained are 
listed in Table 3 and plotted as a function of heating rate in 
Fioure 10, together with the range of values for peak 
width determined experimentally. 

DISCUSSION 

The results presented above show how data obtained on 
heating a polymer glass in the d.s.c, can be corrected for 
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Figure 10 Variation of theoretical peak width as a function of heating 
rate, indicated by full line through the open circles. The shaded area 
gives the experimental variations for T~ =40°C, taken from Figure 6, 
over the whole range of values for R. The lower dashed line of the shaded 
area corresponds to R = 0.33, and the upper dashed line corresponds to 
R=I .0  

thermal lag. The method of correction is based on the 
theoretical invariance of the peak width during the 
heating stage of intrinsic cycles. The results in Figure 7 
show a linear dependence of the corrected peak 
temperature, Tp(corr), on log (heating rate), in agreement 
with theory (equation (4)), and with a constant value for 
slope from which the material parameter 0 is obtained 
(Table 2). 

The method of correction defined by equations (5) and 
(6) can be used to correct any heating scan through the 
glass transition region. It suffices to determine, from the 
appropriate intrinsic thermal cycles in the manner 
outlined above, the scaling factor Fq, for the required 
heating rate q2 relative to a reference heating rate. This 
scaling factor then applies to any heating scan on the 
same sample at the same heating rate q2. 

While this procedure appears straightforward, it is 
important to emphasize the need to establish a truly 
glassy state at the lower temperature 7"1. Some of the 
experimental difficulties associated with this are discussed 
in the following sub-sections, before comparing the 
experimental results with the prediction of the theoretical 
heat transfer model. 

Effect of lower temperature T 1 
The parameter 0 is introduced into the theory as a 

material constant, independent of cooling and heating 
rates and of the lower temperature of thermal cycles. It is, 
however, evident from Table 2 that the observed value of 0 
for T~ = 55°C is not independent of R. These results were 
the first to be obtained in this work; though now known 
to be invalid, they have deliberately been included with 
the purpose of showing the dangers of using a lower 
temperature T~ which is too close to the transition region. 

It was shown above in the 'Theory' section that an 
advantage of the correction procedure employed here is 
that it is independent of the choice of lower temperature 

T~, provided that this temperature is within the 
asymptotic glassy region. The temperature 7"1 of 55°C was 
originally considered to be satisfactory since it was 
apparently some 16°C below the dilatometric glass 
transition temperature. However, two important aspects 
combined to make this untrue. First, the temperature scale 
of the instrument was calibrated for the heating stage of 
the thermal cycles, which involves an instrumental 
temperature lag in the opposite sense to that during the 
cooling stage; and second, during cooling, the sample lags 
some degrees behind the set temperature. The 
combination of these effects is to cause the sample 
temperature for 7"1 = 55°C not to lie sufficiently far below 

The consequence of an unduly high T 1 is now discussed. 
On reheating, the slope of the asymptotic glassy region 
will be greater than it should be, and hence the peak onset 
temperature (Ti in Figure 2) will be higher than it should. 
This will result in the peak width being less for 7"1 = 55°C 
than it is for 7"1 = 40°C at the same ratio R. This effect can 
clearly be seen by comparing Figures 5 and 6, particularly 
at the fastest heating rates. 

Effect of ratio R 
The effect of the ratio R can be understood similarly. As 

the cooling rate (and hence R) increases, Tg occurs at 
higher temperatures so that at the set instrument 
temperature of T~ = 55°C the asymptotic glassy region is 
more closely approached by the sample. Higher values of 
R will therefore yield, for temperatures 7"1 too close to T v 
lower slopes for the asymptotic glassy region. 
Consequently, wider peaks will result and larger 
corrections will need to be applied, leading to a decrease 
in the slope (proportional to 0-1) of the plot of Tp (corr) as 
a function of log q2. Thus 0 will increase with R and 
approach the true value corresponding to the use of a 
lower temperature T1 (e.g. 40°C), which really does lie 
within the glassy region. These trends are exactly those 
indicated in Table 2. 

On the other hand, for T 1 = 40°C, the corrected peak 
temperatures vary systematically with the heating rate, 
involving a constant value for 0 = 0.68 + 0.04 K -  1. 

Effect of heating rate q2 
The data in Table 1 and Figures 4-6 cover a range of 

heating rates from 2.5 to 40 K min-  ~. The data shown in 
Figure 7, however, do not extend beyond a heating rate of 
20 K rain- 1. The reason for this restriction of the data in 
Figure 7 is as follows. When the sample is reheated from 
the lower temperature T~, a transient temperature 
gradient develops within the sample, and a certain time 
elapses before a steady-state temperature gradient 
characterized by a linear baseline (see Figure 2) is 
established. A uniform glassy condition is reached, 
therefore, at a temperature which increases with the 
heating rate q2. 

The effect of increasing heating rate in this context is 
shown in Figure 3, where it can be seen that, for a heating 
rate of 40 K min-  1, the transient regime continues to such 
high temperatures that a steady-state glassy region is 
never fully established. In fact, this transient effect was 
found to occur for heating rates greater than 20 K min-  1 

when the lower temperature T~ was 40°C. If a steady-state 
glassy condition is never established before the onset of 
the peak occurs, then the theoretical analysis and the 
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procedure for correcting for peak width are invalidated. 
The same conclusion can be reached by observing the 
heights of the peaks in Figure 3. The peak height for a 
heating rate of 40 K min-  x is significantly less than that 
for slower heating rates, whereas the peak height should 
be constant for these cycles (see Figure 1). Accordingly, 
data for analysis were restricted to heating rates less than 
20 K min-  1 

Comparison of theoretical and experimental results 
Table 3 gives the theoretical temperature differences 

between heater and sample for various heating rates. For 
the fastest heating rate of 40 K min-  1, it can be seen that a 
thermal lag (between set temperature and Nth node) of 
the order of 2.5 K is calculated, falling rapidly to less than 
0.5 K as the heating rate is reduced to 5 K rain- 1. These 
results correspond well with thermal lags calculated by 
Richardson et al. 9 

With respect to the peak width, while the theoretical 
model shows a variation that is qualitatively in agreement 
with the experimental data (Figure 10), there are 
significant differences in detail. In particular: the 
theoretical variation reaches a limiting value below a 
heating rate of about 1 K min-  1, while the experimental 
data do not suggest such a limit; and the dependence on 
heating rate is much more marked for the theoretical 
model than is actually observed experimentally. 

There are several possible reasons for these differences. 
First, the typical dependence of Cp on temperature used in 
these calculations (Figure 8a) was taken from a set of 
experimental data. Even though these data were obtained 
for a slow heating rate, they are nevertheless subject to 
thermal lag, and the peak in Figure 8 is therefore wider 
than it would be in the absence of thermal lag. The 
theoretical calculations of heat transfer, however, assume 
Figure 8a to represent the real (no thermal lag) 
dependence of Cp on temperature. The theoretical results 
in Figure 10 therefore level off at a value for the peak 
width which is determined by the Cp dependence shown in 
Figure 8a. 

Another possibility for the differences between theory 
and experiment is that they could result from the 
simplifications inherent in the theoretical approach 
adopted here. In particular, the kinetics of the structural 
recovery behaviour, which have been treated 
theoretically 12 for a model system, have been separated 
from the heat transfer behaviour; thus the theoretical 
model here assumes a specific heat variation (Figure 8) 
which does not involve the kinetic aspects of structural 
recovery. The interaction of the theoretical kinetic and 
heat transfer models would be extremely complex, but it 

D.s.c. of polymer glasses: J. M. Hutchinson et al. 

could be expected to broaden the Cp peaks (Figure 9), and 
hence flatten the theoretical curve of Figure 10. 

CONCLUSIONS 

Corrections for thermal lag in differential scanning 
calorimetry of polymer glasses in the glass transition 
region can be derived from intrinsic thermal cycles. These 
cycles involve cooling from equilibrium above Tg to a 
lower temperature T 1, and then immediately reheating to 
equilibrium above Tg again. It is shown that such 
corrections lead to a unification of the data provided 
that T 1 is within the asymptotic glassy region. 
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